Table 1. Project history of the Dynamic Underground Stripping project LLNL gasoline spill site cleanup. | Phase | Dates | Objectives | Accomplishments | |---|--------------------|---|---| | Vacuum Extraction,
Vadose Zone
EM 40 Operations | 9/88 to
12/91 | > Extract vadose gasoline contamination. > Evaluate extraction effectiveness, | > Pilot Test permitting received. > 2000 gallons removed > Biological activity confirmed | | Clean Site Engineering Test EM 50 | 2/91 to
9/91 | Demonstrate establishment of steam zone below water table. Evaluate and optimize monitoring, imaging systems. Optimize resistance heating electrode design. Evaluate personnel and environmental safety. | > 10,000 ya² steam zone established below water table with no steam rise. > ERT, thermal logging, and tiltmeters demonstrated, choser for gas pad use. > Individual electrode capacity raised from 20 kW to 2 kW. > Safe procedures established for personnel; no detrimental environmental effects. | | Electrical Pre-Heat EM50 operations, EM 40 Treatment Facility F construction | 11/92 to 3
1/93 | Raise temperature of clay/silt layers 20°C so conductivity always above steam-temperature gravel zones. Test electrical safety at high current in injustrial area. Optimize electrical heating methods. | Clay pre-heating accomplished. Maximum heating to 70°C in clay layer. Safety measures and procedures adequate. 850 k W continuous power achieved. Nighttime operations with daylight construction of treatment facility. | | 1st Steam Pass Joint EM40/EM50 operations | 2/93 to
3/93 | Heat target zones to steam temperature. Optimize monitoring/control methods. Evaluate treatment procedures and facility. Quantify possible deleterious effects (such as contaminant spreading). Demonstrate safe handling of steam and hot gasoline effluent. | Upper and Lower steam zones heated to boiling point. ERT established as control system with 12 hr turnaround on 10 planes/day. Non-contact thermal logger demonstrated with no hysteresis, 100°C/2 ft gradients. Gasoline found to be mainly recovered in vapor phase, greatly exceeding capacity. No liquid phase free-product recovered. No spreading of contaminant to outer monitoring wells/ Safe handling of steam and hot gasoline. 1700 gallons gasoline removed. | Table 1. (Continued.) | 2nd Steam Pass | 5/93 to | | > 100,000 yd ³ heated to boiling | |--|------------------|--|--| | Joint EM40/EM50 operations | <i>7/</i> 93 | treatment system with 10x capacity of first pass. > Optimize steaming/recovery technique to maximize vacuum recovery. > Heat zones which were insufficiently heated in first pass. > Accurately measure gasoline flux in vapor and condensate paths, reduce uncertainty in total recovery rate, continuously monitor gasoline flux. | > Recovery rates in excess of 250 gal/day achieved. > Tiltmeters used for imaging of horizontal extent of steam zones from individual wells. > Most cool zones from 1st pass fully heated to steam temperature one "cold spot" remained at 80°C). > Fluxes measured to ±10 % accuracy, continuous monitoring systems demonstrated. > 4600 gallons gasoline removed. | | Post-Test Drill-Back
Characterization | 7/93 to
9/93 | > Measure soil
concentration changes
along six-hole cross- | Soil concentrations reduced dramatically.No spreading of contaminant; | | EM 50 | | section > Ascertain from soil concentrations whether spreading had occurred (outside original contamination) > Evaluate process effectiveness. > Examine possible changes to soil. > Examine effects on existing microbial gasoline-degrading ecosystem. | only inward motion seen. > Vadose zone completely clean (<1ppm) > Saturated zone contaminant remained around extraction cluster only. > No significant soil changes. > Active microbial ecosystems at all locations and soil temperatures up to 90°C, makeup varies by soil temperature. | | Accelerated Recovery and Validation (ARV) EM 40 Operations | 10/93 to
1/94 | Remove remaining free product, especially in cool zone. Make use of existing heat and high extraction rates to continue removal. Electrically heat clay/silt zones to enhance removal. Test sparging, injection well extraction. | Remaining free-product gasoline removed (1000 gallons). Ground water concentrations of 5 of 6 egulated compounds reduced to MCL. Benzene down to 100 ppb in ground water. Sparging monitored with noblegas tracers. Electrical heating maintained site soil temperatures during extraction. |